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DIMENSIONAL CHANGES IN t J LTRADRAWN POLYETHYLENE

Numa J. Capiati and Roger S. Porte r
Materials Research Labo ratory

Polymer Science and Eng ineeri ng
University of Massac husetts

Amherst , Massachusetts

ABSTRACT

Samp les of ultradrawn high density polyethy lene were studied by thermo-

mechanical analysis. The purpose was to study the dimensional changes in poly-
ethylene morphologies of extreme orientation. Dimensional changes were measured
from —14 0°C to +70°C with a precision of bette r than 1% . A negative thermal
expansion coefficient was observed along the length (c axis) of the fibers containing
the polyethylene morpholog ies of extreme orientation. A change in negative coefficient
is observed between -35 and -115°C, The si gn and magnitude of the expansion coefficient
confirm . along with other evidence , the existence of extended chain structures in these
morphologies . A series parallel model has been developed for the ultradrawn polyeth y—
lenes to describe the dimensional changes with temperature.

*On leave from Universidad Nacional flel Sur ,
Planta Pi loto de Inqenieria Quirrica , Bahia Blanca , Aroentina.
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INTRODUCTION

Thermal expansion stud ies on polymer crystals h a v e  received considerable

attention . Several authors have reported negative thermal expansion coefficients

for the c-axis direction (chain direction) for the polyethylene orthorhombic unit

cell (1-5) . A reported value at ambient temperature (2) ,  -12 x 10 6 OC 1 is rela-

t ivel y small and of opposite si gn compared with the coefficients in the other directions

(basal plane); ab +3.8 x 10~~ and aa +22 x ~~~ OC i, resp. (14) . Kobayashi and

Keller (2) explained the negative coeff icient by an increase in torsional vibration

of the polyethy lene p lanar zi gzag with temperature. Equilibrium confi gurations in

the crystal of shorter dimensions result at higher temperatures . Also , the chain

contraction is fac ilitated, when temperature increases , by greater lateral chain

separation due to the expansion in the a and b directions (2) .

Negative thermal expansion coefficients , measured on macroscop ic samp les ,

have been published recentl y (1 ,7). Kim and DeBatist (1) observed a reversible

and reproducible negative coefficient for cold-drawn polyethy lene in the draw

direction . The inversion , from positive to negative , occurs when polyethylene

samples are drawn to ratios of over 4. Baughman and Turi (7) measured the c axis

expansion coefficient of pol ydiacety lene single crystals. Solid-state polymerization

and purification procedures provided sing le crystals with dimensions up to the order

of 1 cm (8) . This made possible the direct macroscop ic measurement of dimensional

changes w ith temperature (7) .

I -~~~~ 
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Polyethylene fibers , obta ined by solid -state ext rusion in a capil lary

rheometer , contain certain proportions of extended chain crysta ls (9,10) and an

extre mely hi gh orientation in the chain axis direction (ii). The mechan ica l

properties of these ultraoriented polyethylene fibers depend on pressure and

temperature of extrusion (12) . Briefl y, a change in extrusion pressure corresponds

• to a change in undercooling and consequently different crystal shapes and dir ensions

result. Also, the temperature effect on fiber properties has been exp lained as a con-

tribution to molecular mobility which decreases stress concentrations and improves

the fibrillar packaging in the final fiber. Clearly, var iations in preparation pressure

and/or temperature produce marked changes in morphology and structural perfection .

The fiber tensile modulus and its similarity to the perfect orthorhombic crystal

modulus (13) , 2.4 x io 12 dynes/cm 2 . indicate the high degree ~ structural

perfection that has been attained in the polyethy lene fibers . An evaluation of

the corresponding thermoelastic properties also seems to be a proper approach

for a better morphological understanding as well as a measure of perfection of

samples prepared under different conditions .

EXPERIMENTAL

A thermomechanical anal yzer , TMS- 1 , was used together with a di fferential

scann i ng calorimeter , DSC- 1B. both by Perkin Elmer Corporation , Norwalk ,
.1

Connecticut.

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~ n~~~~~ - ~~~~~~~ ~~~~~~~~~~~~~~
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The polyme r used throug hout was a high density polyethy lene , DuPont

Alathon 7050 , M
~ 

= 58 ,500 , Mn = 18 ,1400. The samp tes were prepared by the solid—

state , crystal—crystal transformation process described in detail elsewhere (12) .

In brief, constant pressure and temperature were maintained throughout the

crystallization from the melt in the extrude r reservoir (lnstron Rheometer) , This

was followed by a solid-state extrusion below the polyethylene melting point through

a special capillary for the Rheometer (12) .

Thermal expansion coefficients were measured on fibers prepared at tem-

peratures between 130 and 135°C and pressures between 1270 and 2400 atm . Samp les

were run, in the TMS-1 , between 70 and -140 °C at a scanning rate of 10°C/m m under

nitrogen atmosphere . A “zero load condition” on the probe was used; that is the

minimum load required for the probe to follow the samp le dimensional changes was

emp loyed (2.5 g). The instrumenta l error is less than + 1% for the magnification of

1O 4 used throug hout these tests . Both the probe and holder are made of qua rtz

and , from geometrical desi gn , the test gap should be invar ian t  in leng th ove r the

measured temperature range .

r Strands of the special polyethy lene morp hology with a diameter of 0. 1 ~4 cm

were sectioned to a length of about 1 cm using a high-speed drill with a steel blade.

Special care was taken to achieve flatness and parallelism for the ends of the strands.

4. 

- ~~“ ~~‘ “‘~,-‘.1 ‘ - .: _‘. _  ~‘~~~
-

~
-.

~~.•~~~~•--—
.



- 5-

RESULTS AND DI SCUSSION

The expansion coefficients for the orthorhombic crystals of pol yeth y l ene

in directions parallel and perpendicular to the chain axis are of opposite si gn and

notabl y different in magnitude ft -6) -- As mentioned before , the repo rted value (2) —

-6o — 1 . . -5for the c axis direction is - 12 x 10 C and for the a and b directions (6) +22 x 10

and +3.8 x 10 SO~ l
, resp. This is a consequence of different mechanisms controlling

the length--temperature relation for the different directions . The positive coefficient ,

in the a and b directions , is due to the increase in separation distance between

chains with temperature . In contrast , parallel to the c axis , the controlling mechanism

Is the change in torsional vibration states of the planar zigzag with shorter equili-

brium lengths corresponding to higher temperatures (2 ,14) . This notable aniso—

tropy suggests that thermal expansion might be used to evaluate the structural

perfection in ultraoriented polyeth ylene fibers .

The specific change in length parallel to the fiber axis , for a typical samp le ,

is shown as a function of temperatu re in Figure 1. The temperature and pressure of

prepara t ion  were 134°C and 2100 atm , resp. The slope in this plot is the thermal
‘S expansion coefficient. Two almost linear regions can be distinguished. One

between 70 and -35°C with coefficient cx .1 - 10.6 x 10 6
~C ~ and another between

-45 and -140°C with coefficient a2 7~3 x 10 6°C 1 . All the samp les showed

negative expansion coefficients and a variation in slope between -35 and -45°C.

The slope break is sharpest for highest modulus samp les as can be seen in

Fi gure 2.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _
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The change of the sl ope in Fi gu re 1 may su gg est a t rans i t ion  w t t h ; n  the

c ry sta l l ine phase. Although riot conc l us ive , the transition may be caused by a

discontinuity in the rotational- vibration energy states at t h i s  t rans i t i on  t~:mperature.

The negative thermal expansion coefficie nts , which are illustrated i t -

Fi gure 1, show the presence arid high axial orientation of extended chai ns in  the

fiber. Chain extension and orientation have been generall y recognized as the main

contributo rs to rigidity and mechanical strength in fibrillar materials (10 ,12 , 15- 17) .

Fi gure 2 shows a correlation between the expansion coefficients cz 1, hi gher

temperature , and a2, lower temperatu re , and the tensile modulus CE) . The modulus

data were obtained from stress-strain curves (12) .  The values used in F io u re 2

corresp ond to a strain rate of 6 .67 x 10~~ sec~~~. The strai ght lines are the best fit

to the experimental values . The lines were obtained by least squares anal ysis.

The corresponding equations are :

a 1 = 6. 0 7 x io 6 
0.79 x io

17 
E. (1)

4

-a 2 = 6.45 x io 6 0 , 13 x 10 17 E. (2)

1,

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ - i . ~~
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The 95% confidence limits for the slopes are + 0.01  arid + 0. 19 for a . and ~~~~,,-— 
I 2

respectivel y.

The coefficient a 1 becomes more negative for hiqher moduli indicating a

greater contr ibution of the extended chains to the equilibrium length . A corre~a—

(ion coef ficient of 0 ,95  for Equation (1) indicates the strength of l inea r i t- ~ between

elastic modulus and therma l expansion above --45°C in the experimental ranqe

covered. At lower temperatures , on the other hand, the coeffi ci ent a2 seen~. to

be insensitive if not independent of modulus , since the small negative slope in

Equation (2) can be positive within the confidence limits . Because the modulus

depends strong ly on the amount of extended chains , its relation to thermal expansion

measures the contribution of extended chains to dimensional changes . The almost

independency of a2 on E1 below the transition is consistent with a smaller extended

cha in contribution to expansion at such low temperatures or due to a similarity of

crysta ll ine  an d amorphous (g lassy) reg ions at low temperature .

The thermoelast ic behavior of these polyethy lene f ibers may be approached

by cons idering them as composed of three different morpholog ies : (1) “Continuous

c r y s t aL s ” (171 , i .e.  a crysta ll ine arrangement in which molecular chains are

perfect ly al igned and extended , their chain ends being randomly distributed

throughout the crystal; (2) folded chain crystals , including only the a l i gned

chain regions between folds; and (3) amorphous phase composed of chain folds and

unoriented material ly ina between consecutive chain-folded crystals. Fioure 3

shows schemati call y the proposed model - The amorphous phase acts both in

series w i th  chain- fo lded crystals and in parallel with continuous crystals. This

.~~~
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arrangement is consistent w i th the transformation from spherulite to f ibr it lar

structure (12 ,15) . In fact , microf ibers are formed by clusters of longitudinally- -

aligned folded crystals and extended chains passing over several of these

clusters . In addition, the concept of continuous crystals is reintroduced here (17) .

The fully-extended chains are thus continuously arranged throughout t),e fiber .

If continuous crystal length becomes macroscopic and equal to the total length of

the model , its thermal expansion coefficient will approach the coefficient for poly-

ethy lene sing le crystals in the c axis direction (2) , - 12 x 10 6°C 1. Equal thermo-

elasti c properties (E and a) are assumed for chains in folded and continuous crystals.

If the effect of the small chain ends concentration in the continuous crystal phase is

neg lected, both structures will be similar. They , obvious ly ,  diffe r in length . The

thermal expansion for the amorphous phase is taken as +2 x 10 6°C ~ (2 ,4,5,18) .

The series-parallel model in Figure 3 may be considered to be subjected

separatel y to an external tensile force and to a temperature difference high enough

to generate the same total deformation . Under these conditions a relation between

thermoelastic properties and the fraction of continuous crystals , Ae/A T~ 
in the

fiber can be derived on the basis of the model . The direct conversion would require

a knowledge of the stress-temperature coefficient .

The symbols used are : A , cross sectional area (cm 2 ); L, length (cm);

F, force (dynes); ~L, length increment (cm); ~T , temperature increment (°C);

q ,  volume fraction of crystals. The sub-indices being: T , total; e, continuous

crysta l phase; f, folded chain crystal phase; a , amorphous phase.

I
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From Figure 3 it is clear that L
T 

= Le = La + Lf . Also the cross sectional

area of folded chain crystals is equal to that of the amorphous phase and A T Ae
+ Af and Af = A .

The elastic modulus and thermal expansion coefficient are defined as:

E = 

~~~~ 
[d~nes] and a i lL  ~~ L/~ T [0c~~] (3a)

A force balance under an external load, see Figure 3 , gives

~
LT (ALe + AL E)

FT = AT ET _t
~ 

Ae Ee T_— + (AT - Ae) Eaf (Le + Lf)

and therefore

AL1- ALe (AT 
- Ae) 

~‘~~a + ~ Lf)ATET -i~-;:-~ 
= A E + Lf La 

(3b)

c c -
Since from Figure 3

E f = 

L + L f

4.

I
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The deformation resulting from the action of an external force may then

be replaced in Equation 3 by the corresponding deformations generated by a

temperature difference:

AL = a LA T

Therefore

ATETOT = A E a  + 

(AT - ~~
)

+ 

~~~~ + QfLf)

Then by factoring out AT and Ae gives :

AT 
[

~~
ET 

- 

QaLa~~~~fLf ] A 
[Eeae 

aaLa + o fLf 

] 

(3a)

1

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~
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From the model in Figure  3, it is clear that La = L1- 
- Lf. Therefore by

making this substi tution in Equation 3a and clearing Lf/LT results in:

L -
~ L

+ 

4 

(a~ ~~ [ ~a + 

4 

(af 
- aa)

AT OTET 
- 

1 L — I = A a E  - 1 L 1 1
~~~+ f 1 1

j L 4 c ~~~

The fraction of continuous crysta ls is expressed:

rLf 1 1 ~ 
U1-E•~•~

A [ç OTET t_ - r-
~ 

+ aa afj  + E 
- aa

~~ ~.![a E ~~ - 

r + c La
_ a

f ]+  
ae:e a

The relation Lf/LT 
represents the fractional length occupied by the folded chain

crystals and can be stated as a function of the volume fraction of crystals (qi ) and

the fraction of continuous crystals present.

I— - _
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Lf
t— = (cpA~ 

- Ac) / (A T 
- Ac ) (5)

Substituting in Equatio n 4 , using Ee E~. and ae = a
f and rearranging

ETaT 
- Eeae 

+ 

ETaT 
- EaQ 

-A E E (1 q~)e e a 
(6)AT E1-a1. - Eea EeQ - E u

I E + E (1-~~)

Equation 6 relates the fraction of fully-extended and aligned chains fo rming

-
~~~ the fiber structure to the thermomechanical properties . The product E a is the

* stress induce d per unit of temperature increment , under constant length .

The fraction of extended chains calculate d fro m Equation 6 agrees with

the value obtained experimentall y by nitric acid etching and posterior gel

permeation chromatography (10) . Tha t is:

I’.

I

~~~~~~~~~~~~~~~~~~~~~~ ;~~~~ 5 ... ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~1.



Assuming Ee = 2
~

4 X  10 12 dynes /cm 2 (12), a
e
= _ i2 x ~o 6 °~ 

1 (2),

a = 2 x 10 4 ° C 1 (2 ,4,5,18) , Ea = 10~ dynes/cm 2 and q 0.85; the fraction

Ac /A T calculated for ET = 5 x 10 11 dynes / cm 2 and a
1- 

= -lo x 10 6 °C 1 results

0. 18. The experimental value for samples with similar mechanical properties

was 0 . 1 5+ 0 . 0 3  (10) .

The product ETQ.r may be obtained by measuring the force necessary

to maintain the length constant when the sample is subjected to a temperature change .

Hence , the continuous crystal content may be evaluated, on these ultraoriented

fibers, by a single thermoelastic measurement in a relati vely simple experiment.

From such values the tensile modulus is also predictable with good precision.

CONCLUSIONS

(1) The negative thermal expansion coefficients , found experimentall y

- - 
along the length of ultraoriented polyethy lene fibers, confirm the existence of

I extended chains in the structure .

(2) The expansion coefficient measured parallel to the fiber axis between

-45 and +70°C correlates l inear l y with the tensile modulus in the experi mental

range covered. This suggests a strong contribution of extended chains to the

* fiber equilibrium length.

(3) A series-parallel arrangement, involving continuous and chain-folded

-, crystals and an amorphous phase , may be considered to explain the thermoetastic

behavior and predict the fraction of extended chains as a function of measurable

• properties . A calculated value of 18 % is in good agreement with that obtained

exper imenta l l y, 15 + 3% on a samp le with similar mechanical properties (9 ,10) .

I’,
t

I

I - 
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(4) A di stinct transition in the c-axis expansion coefficient was found at

near -45°C with values rang ing here from -35 to -45°C. Previously on three,

probabl y-less-perfect, polyethy lene strands we observed th is transition at -49,

-52 and -53°C (19). The comparable data of Kim and DeBatist indicate a break in

their expansion curve at near -50°C (1). This transition might be attributed to the

crystalline phase since it is also observed in a related single crystal. No change

in the c-axis dimensions for polyethylene was observed , however , from x-ray

studies on polyethy lene single crystals in this temperature range (20) .
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CAPTIONS FOR FIGURE S

1. Speci tic change in en- ~ parallel to the fiber axis as a function of

temperature.

2. Correlation between the thermal expansion coefficients a1 and a2 and the

tensile modulus . a1 for 7O to - 35°C; a2 for -45 to- 140°C.

3. Series -parallel model for the ultraorlented pol yethylene fiber.
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Se ries - Paral lel Model
Depicting Changes ~n Length With

Stre ss and Temperature
for Ultrooriented Polyeth ylene Fibers

I Le 

[1J1J’~f l Lf

FT Or cx 1

t,.

I 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ± ~~~~~~~~~~~~~~~~~ --~~~~~~

-
~~~~ _~~~~ -- ~~~~~ ~1.



&~

S . .
..


